

CORDIS SERIES

CHV High Volume
Pressure Controller with
Integral Booster

Operating Instructions

Clippard's proven EVP proportional valves provide fast, stable control of pilot pressure

Precise, linear pressure control within a closed-loop system with ultra-high resolution, repeatability and high forward and reverse flow

The Cordis CHV utilizes the same microcontroller, integrated pressure sensor, and two Clippard EVP proportional valves. With the inlet and exhaust valves connected to the pilot area of the integral volume booster, the comparative circuit responds to the given command by referencing the on-board sensor located on the output control path of the booster. If at any point the on-board downstream sensor indicates a value higher or lower than the set point command, the comparative circuit will immediately open either the exhaust or inlet valve to maintain stable and accurate control pressure in the application process, but with significantly higher flow capabilities.

Content

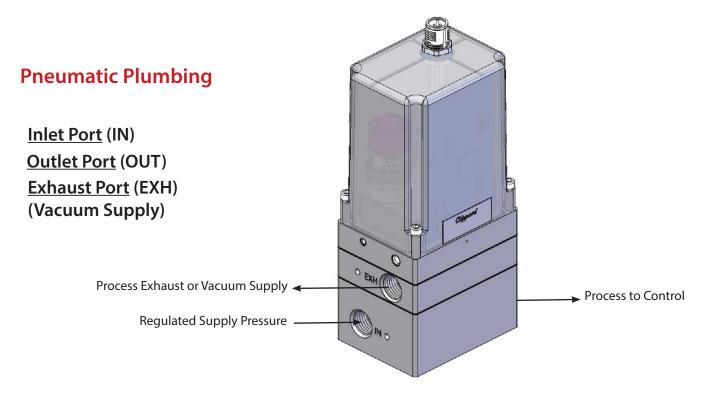
2	Technical Data	Serial Commands	11
2	Operational Description	Serial Connection	12
3	Mounting	Ordering Information & Cables	13
3	Pneumatic Plumbing	Accessories - Mounting Bracket	13
3	Safety & Best Practices	Dimensions	14
4	Calibration	Contact Information	15
4	Recalibration	Limited Warranty	15
5-6	Electrical Connection	Other Useful Material Links	15
7-11	Serial Configurations	clippard.com/link/cordis	

Technical Data
Table:1

ELECTRICALVoltage15 to 24 VDCCurrent Draw< 250 mA max.Signal/CommandElectrical: 0 to 5 VDC, 0 to 10 VDC or 4 to 20 mA Serial: 3.3 VDCPERFORMANCE± 0.5% of full scaleAccuracy± 0.5% of full scaleResolution≤ 35 mVMax. Hysteresis± 0.50% of full scaleTypical FlowSee Page 16Response Time< 20 ms typical (application dependent)OPERATING CONDITIONSOperating Temperature32 to 120°F (0 to 40°C)MediumClean, dry, non-corrosive gasesMounting AttitudeAnyProcess Connections1/4" NPT or G1/4, Outlet & Exhaust	Teerimear Data	
Current Draw < 250 mA max. Signal/Command Electrical: 0 to 5 VDC, 0 to 10 VDC or 4 to 20 mA Serial: 3.3 VDC PERFORMANCE Accuracy ± 0.5% of full scale Resolution ≤35 mV Max. Hysteresis ± 0.50% of full scale Typical Flow See Page 16 Response Time < 20 ms typical (application dependent) OPERATING CONDITIONS Operating Temperature 32 to 120°F (0 to 40°C) Medium Clean, dry, non-corrosive gases Mounting Attitude Any Process Connections 1/4″ NPT or G1/4, Outlet &	ELECTRICAL	
Signal/Command Electrical: 0 to 5 VDC, 0 to 10 VDC or 4 to 20 mA Serial: 3.3 VDC PERFORMANCE Accuracy ± 0.5% of full scale Resolution ≤35 mV Max. Hysteresis ± 0.50% of full scale Typical Flow See Page 16 Response Time < 20 ms typical (application dependent) OPERATING CONDITIONS 32 to 120°F (0 to 40°C) Medium Clean, dry, non-corrosive gases Mounting Attitude Any Process Connections 1/4" NPT or G1/4, Outlet &	Voltage	15 to 24 VDC
or 4 to 20 mA Serial: 3.3 VDC PERFORMANCE Accuracy ± 0.5% of full scale Resolution ≤35 mV Max. Hysteresis ± 0.50% of full scale Typical Flow See Page 16 Response Time < 20 ms typical (application dependent) OPERATING CONDITIONS Operating Temperature 32 to 120°F (0 to 40°C) Medium Clean, dry, non-corrosive gases Mounting Attitude Any Process Connections 1/4″ NPT or G1/4, Outlet &	Current Draw	< 250 mA max.
Accuracy ± 0.5% of full scale Resolution ≤35 mV Max. Hysteresis ± 0.50% of full scale Typical Flow See Page 16 Response Time < 20 ms typical (application dependent) OPERATING CONDITIONS Operating Temperature 32 to 120°F (0 to 40°C) Medium Clean, dry, non-corrosive gases Mounting Attitude Any Process Connections 1/4" NPT or G1/4, Outlet &	Signal/Command	or 4 to 20 mA
Resolution ≤35 mV Max. Hysteresis ± 0.50% of full scale Typical Flow See Page 16 Response Time <20 ms typical (application dependent) OPERATING CONDITIONS Operating Temperature 32 to 120°F (0 to 40°C) Medium Clean, dry, non-corrosive gases Mounting Attitude Any Process Connections 1/4″ NPT or G1/4, Outlet &	PERFORMANCE	
Max. Hysteresis ± 0.50% of full scale Typical Flow See Page 16 Response Time < 20 ms typical (application dependent) OPERATING CONDITIONS Operating Temperature 32 to 120°F (0 to 40°C) Medium Clean, dry, non-corrosive gases Mounting Attitude Any Process Connections 1/4" NPT or G1/4, Outlet &	Accuracy	± 0.5% of full scale
Typical Flow See Page 16 Response Time < 20 ms typical (application dependent) OPERATING CONDITIONS Operating Temperature 32 to 120°F (0 to 40°C) Medium Clean, dry, non-corrosive gases Mounting Attitude Any Process Connections 1/4" NPT or G1/4, Outlet &	Resolution	≤35 mV
Response Time < 20 ms typical (application dependent) OPERATING CONDITIONS Operating Temperature 32 to 120°F (0 to 40°C) Medium Clean, dry, non-corrosive gases Mounting Attitude Any Process Connections 1/4" NPT or G1/4, Outlet &	Max. Hysteresis	± 0.50% of full scale
OPERATING CONDITIONS Operating Temperature 32 to 120°F (0 to 40°C) Medium Clean, dry, non-corrosive gases Mounting Attitude Any Process Connections 1/4" NPT or G1/4, Outlet &	Typical Flow	See Page 16
Operating Temperature 32 to 120°F (0 to 40°C) Medium Clean, dry, non-corrosive gases Mounting Attitude Any Process Connections 1/4" NPT or G1/4, Outlet &	Response Time	< 20 ms typical (application dependent)
Medium Clean, dry, non-corrosive gases Mounting Attitude Any Process Connections 1/4" NPT or G1/4, Outlet &	OPERATING CONDITIONS	
Mounting Attitude Any Process Connections 1/4" NPT or G1/4, Outlet &	Operating Temperature	32 to 120°F (0 to 40°C)
Process Connections 1/4" NPT or G1/4, Outlet &	Medium	Clean, dry, non-corrosive gases
Process (onnections	Mounting Attitude	Any
	Process Connections	

WETTED MATERIALS	
Elastomers	Nitrile
Manifold	Anodized aluminum
Valves	Nickel plated brass
Pressure Sensor	High temperature polyamide, alumina ceramic, silicone epoxy, glass
IP65 Housing	Polycarbonate
MORE DETAILS	
Website	clippard.com/link/cordis-chv

Operational Description


The Cordis is designed to accept a pressure on the inlet port, reduce it and control to a user-specific set pressure on the work port. The CHV contains a microcontroller, integrated pressure sensor, and two Clippard proportional valves assembled on to a integral volume booster

For Cordis to control pressure in the process, a regulated supply pressure should be connected to the inlet port (I). The outlet valve (O) should be connected to the downstream process. As the command signal increases, the inlet valve opens to allow pressure to the pilot area of the integral booster. This pilot pressure causes the diaphragm to deflect and open the flow path from the supply port to the outlet port. The output pressure passes over the internal sensor element which is constantly providing active feedback to the microcontroller/comparative circuit. As soon as this feedback matches the user-specified command, the inlet valve closes and holds the commanded pressure downstream.

The CHV controls pressure both in static and dynamic conditions. If the application is dynamic, the unit will maintain output pressure as long as the dynamic flow requirement of the application can be achieved by the maximum flow capabilities. The CHV utilizes either the inlet/fill valve or exhaust/bleed valve based upon change between the Command and Feedback Signals—always striving to maintain the commanded/desired downstream set point.

Mounting

The Cordis CHV series can be mounted in any orientation without negatively affecting process control.

Safety & Best Practices

Recommended filtration for supply media is 40 micron or better.

Supply pressure $\underline{\text{must}}$ be regulated to \leq max pressure allowed for calibrated range. See Table: 2 & 3

Disconnect power if supply pressure is not connected.

Inlet pressure must be a minimum of 10% above max calibrated range of Cordis to achieve max output.

Calibration

The calibration of the Cordis CHV series is done at the time of manufacture to NIST traceable standards. Each unit is calibrated and the PIDs are set to the Cordis standard tuning. If a customer's specific application details are known prior to manufacture (recommended), the PIDs will be tuned in accordance with the known specifications to provide the most stable and repeatable control. Below are the available calibration ranges and maximum allowed inlet pressure for each range.

Table:2	Rated	Inlet I	Pressure f	or Calib	rated	Range	(psig)
---------	-------	---------	------------	----------	-------	-------	--------

	3 · 4 · 5/
CALIBRATED RANGE	MAX. INLET PRESSURE
0 to 5 psig	30 psig
0 to 15 psig	30 psig
0 to 30 psig	60 psig
0 to 100 psig	115 psig
0 to 150 psig	165 psig

Table:3	kated inlet	Pressure for	Calibrated	kange (bar)

CALIBRATED RANGE	MAX. INLET PRESSURE	
0 to 0,5 bar	2 bar	
0 to 1 bar	2 bar	
0 to 2 bar	4 bar	
0 to 4 bar	7 bar	
0 to 7 bar	8 bar	
0 to 10 bar	11 bar	

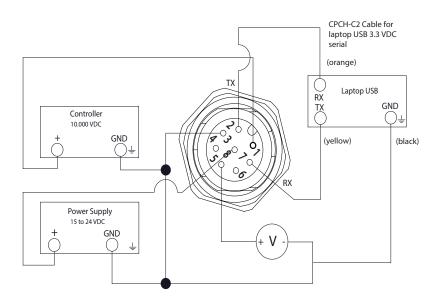
Recalibration

The Cordis CHV series does not require recalibration during its lifetime. If the calibration needs to be changed and/or modified, the unit must be returned to Clippard or completed by a certified field technician. Any attempt to recalibrate in the field without prior authorization will void the warranty.

Please contact Clippard for all Return Material Authorization (RMA) requests:

Clippard

7390 Colerain Avenue | Cincinnati, OH 45239 | sales@clippard.com | 1-877-245-6247


Please have the serial number(s) available for reference.

0 to 10 VDC Electrical Connection

Make sure AC power is disconnected before DC connections are made

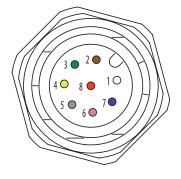
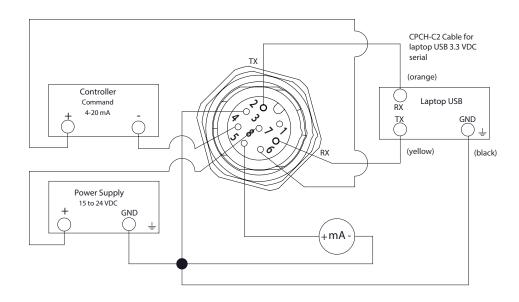

The Cordis requires 15 to 24 VDC on **Pin 8** of the electrical connector. It uses 0 to 10 VDC command signal on **Pin 1** of the electrical connector. The power supply ground, command source ground and **Pin 3** must be tied together. If the analog monitor signal is being used, utilize **Pin 5** to send the 0 to 10 VDC signal to a measuring device like a volt meter, panel meter or acquisition device.

Table:4	Electrical Pin-Out	
PIN NUMBER	FUNCTION	COLOR
1	+Command Input	White
2	3.3 VDC Serial TX	Brown
3	DC Common/Ground	Green
4	Not Used	Yellow
5	Analog VDC Output	Gray
6	Not Used	Pink
7	3.3 VDC Serial RX	Blue
8	Power, 15-24 VDC	Red

Red LED: Power to Unit ON
Solid Blue LED: Analog Mode
Flashing Blue LED: 3.3 VDC Serial Mode

Reference Serial Configuration Section for Command Change Instructions



4-20 mA Electrical Connection

Make sure AC power is disconnected before DC connections are made

The Cordis requires 15 to 24 VDC on **Pin 8** of the electrical connector. It uses 4 to 20 mA command signal on **Pin 6** of the electrical connector. Connect **Pin 4** to DC common or negative 4-20 mA on the control module. If the analog monitor signal is being used, utilize **Pin 5** to send the 4 to 20 mA signal to a measuring device like a mA meter, panel meter or acquisition device.

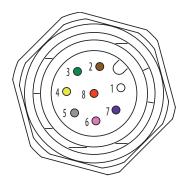


Table:5	Electrical Pin-Out

PIN NUMBER	FUNCTION	COLOR
1	n/c	White
2	3.3 VDC Serial TX	Brown
3	DC Common/Ground	Green
4	-4 to 20 mA Command Return	Yellow
5	4 to 20 mA Output	Gray
6	+4 to 20 mA Command Input	Pink
7	3.3 VDC Serial RX	Blue
8	Power, 15-24 VDC	Red

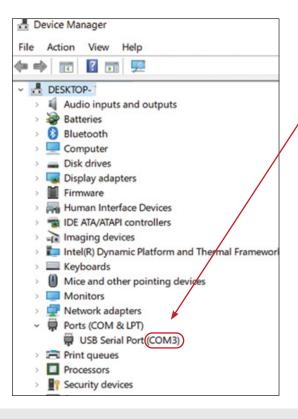
Red LED: Power to Unit ON
Solid Blue LED: Analog Mode
Flashing Blue LED: 3.3 VDC Serial Mode

Reference Serial Configuration Section for Command Change Instructions

Serial Configuration

Cordis utilizes a 3.3 VDC communication signal

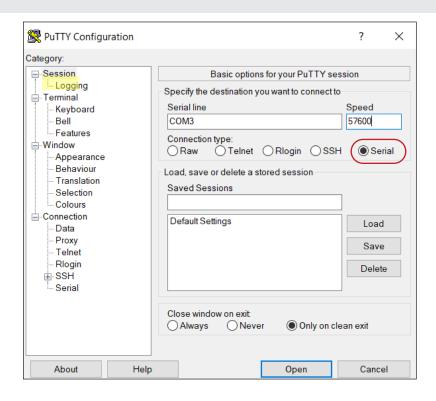
To communicate via Serial with the Cordis, software is required. Many serial software communication solutions are available. If you already have a software solution, please ensure it is configured with the specifications listed below (Table:6) prior to making the electrical connections to Cordis. The commands can be found on Page 13.


If you do not already have a serial software solution, we recommend PuTTY as a free and open-source solution. PuTTY is one of the most common software packages used for serial communication and can be downloaded here: https://putty.org/

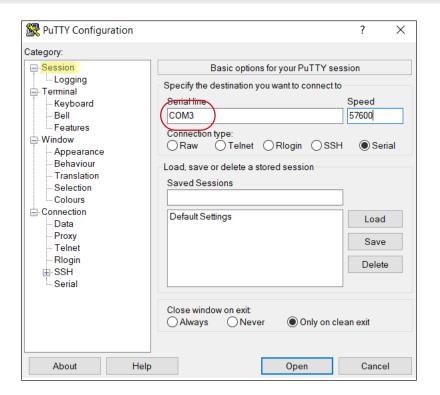
Once downloaded and installed on your windows based machine, please follow the steps below to configure the software prior to making the electrical connections to Cordis. The specifications we will configure and/or confirm within PuTTY are listed in Table:6.

Table:6 Serial Software Configuration (PuTTY)

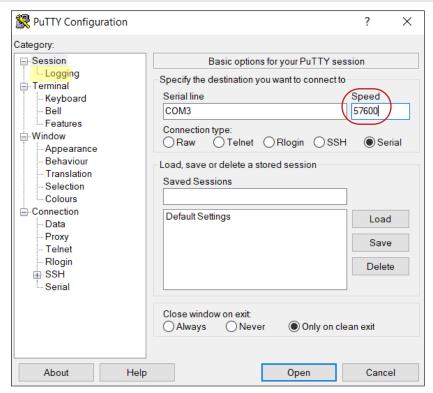
SETTING LABEL	SPECIFICATION	
Speed (baud)	57600	
Data Bits	8	
Stop Bits	1	
Parity	None	
Flow Control	None	
Serial Line	See Steps 1 & 2	


STEP - 1

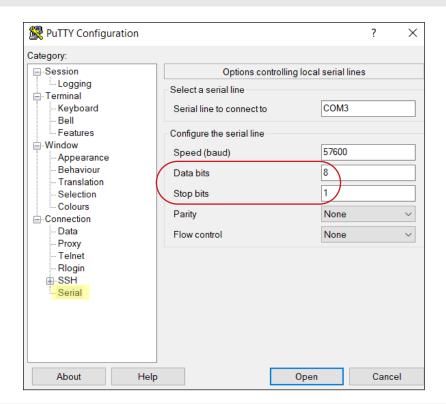
- Ensure proper serial connection to Cordis unit and then connect 3.3 VDC serial to the control device. The wiring schematics can be found on pages 14 and 15.
- 2) Open Device Manager and identify the serial port assigned to the serial cable.


>>> Many ways to open Device Manager: https://www.digitalcitizen.life/ways-open-device-manager-windows

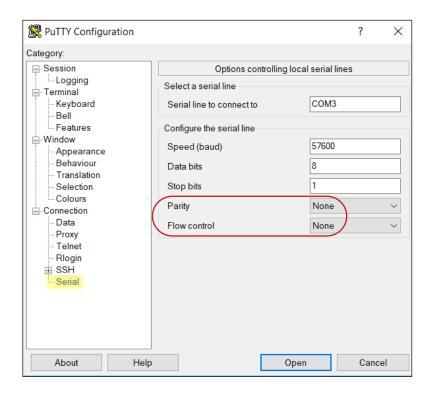
STEP - 2


- Open installed Putty program
- 2) Ensure 'Serial' is selected

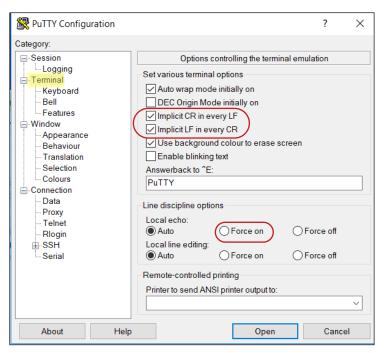
STEP-3


Input the port identified in Step - 1 into the Serial Line as shown.

STEP - 4


Change the speed (baud) setting to: **57600**

STEP - 5


Change **Data Bits** to **8** and **Stop Bits** to **1**

STEP-6

Ensure both **Parity** and **Flow Control** are set to **None**

STEP - 7

In Terminal settings, check the box for: Implicit CR in every LF & Implicit LF in every CR

STEP-8

Once the Cordis is connected and the software is configured, the below commands (Table:7) can be used to change settings, request feedback and control the device.

Note: If you would like feedback as you type, set the Local Echo to "Force On"

Serial Commands

Table:7

DESCRIPTION	COMMAND ABREVIATION	INSERT TO SEE CURRENT VALUES	INSERTED EXAMPLE CHANGES	READABLE	WRITABLE
Model No.	ID	?ID	n/a	Υ	N
Serial Number	SN	?SN	n/a	Υ	N
Proportional "P" Value	PIDP	?PIDP	PIDP: 100	Υ	Υ
Integral "I" Value	PIDI	?PIDI	PIDI: 0.75	Υ	Υ
Command Type (0=Analog, 1=Digital)	СТ	?CT	CT: 1	Υ	Υ
Current Command (0 - 100% of Full Scale)	CC	?CC	CC: 50	Υ	Υ
Monitor Output Signal from Internal Sensor	MON	?MON	n/a	Υ	N
Save Settings to ROM	SAVE	n/a	SAVE	N	Υ

When entering all Reading Commands, always prefix with "?". Example: ?PIDP

Make sure to leave one space between the colon and value when making changes. Example: PIDP: 100

Serial Connection

Make sure AC power is disconnected before DC connections are made

The Cordis requires 15 to 24 VDC on **Pin 8** of the electrical connector. It uses serial communication on **Pin 7** to receive and **Pin 2** to send digital responses. The power supply ground, command source ground and **Pin 3** must be tied together.

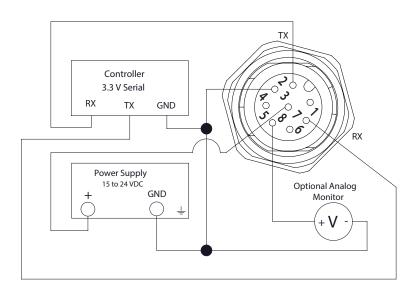
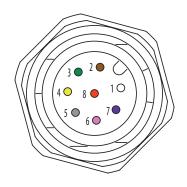



Table:9 Electrical Pin-out

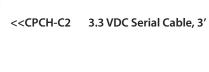
1401017		, , , , , , , , , , , , , , , , , , , 	
PIN NUMBER	FUNCTION	COLOR	
1	+Command Input	White	
2	3.3 VDC Serial TX	Brown	
3	DC Common/Ground	Green	
4	Not Used	Yellow	
5	Analog VDC Output	Gray	
6	Not Used	Pink	
7	3.3 VDC Serial RX	Blue	
8	Power, 15-24 VDC	Red	

Red LED: Power to Unit ON
Solid Blue LED: Analog Mode
Flashing Blue LED: 3.3 VDC Serial Mode

Reference Serial Configuration Section for Command Change Instructions

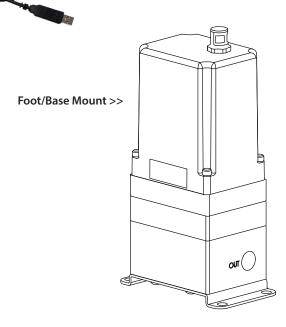
Ordering Information

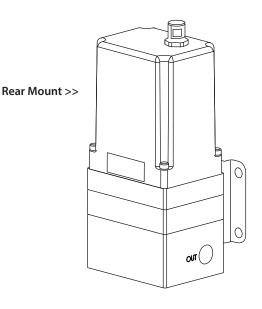
Model	Туре	Porting	Signal/Command	Calibrated Pressure Range
CHV- Pressure Control	H Housed Unit	F 1/4" NPT G G1/4	F 0 to 5 VDC E 0 to 10 VDC R 3.3 VDC Serial I 4 to 20 mA	-A 0 to 1 psig -K 0 to 2 bar -B 0 to 5 psig -L 0 to 4 bar -C 0 to 15 psig -M 0 to 7 bar -D 0 to 30 psig -N 0 to 10 bar -E 0 to 60 psig -O 0 to 15 psia
Consult Clippard for avenue of non-standard command other options.	•	Example Part No. CHV-HFE	-G	-F 0 to 100 psig -P 0 to 30 psia -G 0 to 150 psig -Q 0 to 100 psia -I 0 to 0,5 bar -R -5 to +5 psid -J 0 to 1 bar -S -15 to +15 psid -W -1 to +1 psid

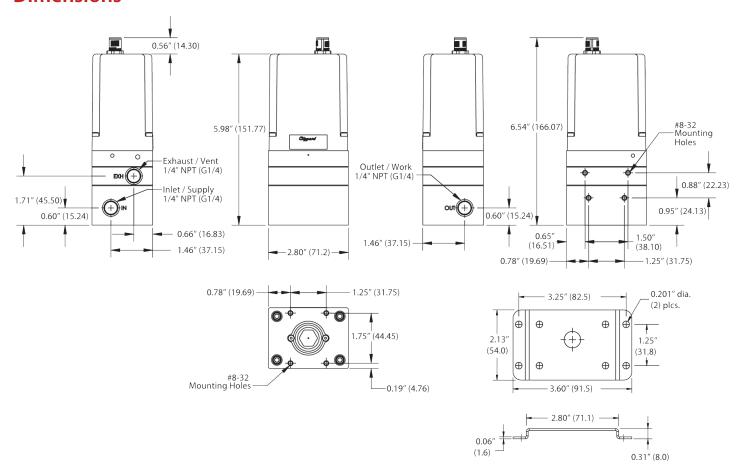

^{*} All flow ranges are factory tested at 100 psig on the process side.

Positive Pressure Supply to "IN" Port. Vacuum Pressure Supply to "EXH" Port.

Accessories | Cable & Mounting Bracket




<<CPCH-C1 Molded Actuation Cable, 8-Pin, 6'



CPCH-B3 Bracket for rear or foot/ base mounting. Four screws included.

Dimensions

7390 Colerain Avenue Cincinnati, OH 45239

1-513-521-4261 1-877-245-6247

Cordis, of the heart

Other Useful Materials
Digital vs. Analog Control White Paper
Pressure vs. Flow Control White Paper
Resolution in Proportional Control White Paper
View Frequently Asked Questions
View Web Site

Limited Warranty

All information contained in this publication is for reference only. Proper design engineering procedures should be used to assure any compliances. Clippard Instrument Laboratory, Inc. reserves the right to make changes without notice and does not warrant or guarantee the information contained herein.

Clippard Instrument Laboratory, Inc. (Seller) warrants its products to be free from defects in material and workmanship for a period of one (1) year from the date of sale. Seller's liability shall be limited at seller's option to repair, replace or refund purchase price of product found by seller's examination to be defective. All claims under this warranty must be made in writing to seller's factory sales department giving full details, prior to return of product, postpaid, to factory. Seller shall not be responsible for product failure due to normal wear, accident, buyer's misapplication, abuse, neglect or alteration of product. Seller will not be responsible for any consequential damages. Clippard makes no other warranty of any kind, expressed or implied. Circuits shown in this catalog are for instructional purposes only. All circuits used on equipment and machinery should be thoroughly tested by qualified personnel under actual working conditions to determine their suitability for buyer's intended use. All technical data and operations are average values based on standard production models. Some deviations can be expected and considerations should be given during initial design stages. All operating characteristics are based on new equipment, under normal conditions of use and environments and oil free air supply. Dimensions stated may be nominal and are subject to change without notice. Contact Clippard for specific dimensional tolerances when dimensions are critical.

Proudly made in the USA.